An efficient algorithm for mining closed inter-transaction itemsets
نویسندگان
چکیده
In this paper, we propose an efficient algorithm, called ICMiner (Inter-transaction Closed patterns Miner), for mining closed inter-transaction itemsets. Our proposed algorithm consists of two phases. First, we scan the database once to find the frequent items. For each frequent item found, the ICMiner converts the original transaction database into a set of domain attributes, called a dataset. Then, it enumerates closed inter-transaction itemsets using an itemset–dataset tree, called an ID-tree. By using the ID-tree and datasets to mine closed inter-transaction itemsets, the ICMiner can embed effective pruning strategies to avoid costly candidate generation and repeated support counting. The experiment results show that the proposed algorithm outperforms the EH-Apriori, FITI, ClosedPROWL, and ITP-Miner algorithms in most cases. 2008 Elsevier B.V. All rights reserved.
منابع مشابه
Efficient Mining of Profit Rules from Closed Inter-Transaction Itemsets
Data mining applications in financial sectors are very common since investors can apply the resultant rules to make profits. Profit mining algorithms in particular, such as PRMiner, can generate profit rules that meet the expectations of investors regarding profit, risk, and win rate. However, most of such algorithms are not efficient due to the long processing time involving going through the ...
متن کاملAn Efficient Algorithm for Maintaining Frequent Closed Itemsets over Data Stream
Data mining refers to the process of revealing unknown and potentially useful information from a large database. Frequent itemsets mining is one of the foundational problems in data mining, which is to discover the set of products that purchased frequently together by customers from a transaction database. However, there may be a large number of patterns generated from database, and many of the...
متن کاملEfficient Mining of Cross-Transaction Web Usage Patterns in Large Database
Web Usage Mining is the application of data mining techniques to large Web log databases in order to extract usage patterns. A cross-transaction association rule describes the association relationships among different user transactions in Web logs. In this paper, a Linear time intra-transaction frequent itemsets mining algorithm and the closure property of frequent itemsets are used to mining c...
متن کاملAn Efficient Algorithm to Mine Online Data Streams
Mining frequent closed itemsets provides complete and condensed information for non-redundant association rules generation. Extensive studies have been done on mining frequent closed itemsets, but they are mainly intended for traditional transaction databases and thus do not take data stream characteristics into consideration. In this paper, we propose a novel approach for mining closed frequen...
متن کاملIncremental updates of closed frequent itemsets over continuous data streams
Online mining of closed frequent itemsets over streaming data is one of the most important issues in mining data streams. In this paper, we propose an efficient one-pass algorithm, NewMoment to maintain the set of closed frequent itemsets in data streams with a transaction-sensitive sliding window. An effective bit-sequence representation of items is used in the proposed algorithm to reduce the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Data Knowl. Eng.
دوره 66 شماره
صفحات -
تاریخ انتشار 2008